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Abstract
We report theoretical studies of electron and hole lifetimes in a free-electron
gas as well as in real metals Al and Nb by means of the ab initio many-
body method and semi-empirical scattering theory approach. We show that
for free-electron-like excitations a simple density-of-state convolution model
of the scattering theory approach (STA–DOS) is a good approximation to the
ab initio lifetimes, the energy dependence of the STA–DOS transition matrix
element being rather unimportant. The approximation of energy-independent
matrix element appears to also be reasonable for Nb. A good correspondence
between the STA–DOS and ab initio momentum-averaged results is achieved
for Nb with an adjusted matrix element, although the ab initio lifetimes disperse
greatly with respect to the averaged value.

1. Introduction

The dynamics of low-energy electron excitations in metals is of major importance for the
understanding of many chemical and physical phenomena on metal surfaces [1]. A number of
experimental tools and theoretical methods has been developed to study the processes of hot-
electron de-excitations. One of the most powerful experimental techniques is time-resolved
two-photon photoemission spectroscopy, which permits us to measure the excited electron
lifetimes on a femtosecond scale [2]. Using this kind of spectroscopy, the hot-electron lifetimes
have been measured for non-magnetic metals [3–8] and magnetic transition metals [9,10]. The
most potent of the developed theoretical methods are the methods based on the self-energy
formalism of many-body theory [11–14]. Such methods were first elaborated for the interacting
free-electron gas (FEG) model by Quinn and Ferrell [15,16], who derived basic expressions for
the hot-electron lifetimes within the random-phase approximation. The analytical expressions
for the lifetime in the limit of small energy—small density parameter were deduced by Quinn
and Ferrell [15, 16], and in the limit of small excitation energy by Ritchie and Ashley [17].
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In the following research the exchange and correlation effects [18], realistic electron densities
within a statistical approximation [19] and band-structure effects [20] were included in the
FEG model.

Recently first-principles calculations based on many-body theory have been performed
for electron lifetimes in magnesium and beryllium [21], aluminium [21, 22] and noble
metals [21–25]. The hole lifetimes have been evaluated in copper [25, 26], silver [25] and
gold [25, 26]. These calculations have been performed within the GW approximation for the
self-energy by using the LDA pseudo-potential approach together with the plane wave Bloch
basis set and also by using the LMTO approach [25], which employs a set of numerical muffin-
tin orbitals to construct the basis Bloch functions. The ab initio calculations in general correctly
reproduce the experimental trends, although some discrepancies between the experimental and
theoretical data still remain [24, 25].

One more approach used to study the hot-electron de-excitations in solids is the scattering
theory approximation (STA). In its rigorous form, [27], STA has the disadvantage of very
large computational efforts to evaluate the transition matrix elements. After averaging the
transition probabilities over wavevectors [28] and neglecting the exchange part of the matrix
elements [29], the scattering rate (inverse lifetime) can be reduced to a simple equation
which contains the convoluted density of states available for scattering and the unique energy-
dependent matrix element (hereafter we call this the STA–DOS model). Within this model
the scattering rates were evaluated for the first time by Kane [28] for bulk silicon. Passek
et al [30] measured the spin-dependent lifetimes of the n = 1 image-potential state on Fe(110)
and interpreted them by invoking the convolution of the first-principles DOS. Drouhin [31,32]
has developed a model similar to STA–DOS to evaluate the scattering cross-section and spin-
dependent inelastic mean free path and applied it to some 3d- and 5d-transition metals. Zarate
et al [33] have proposed simple approximations to the density of states to obtain analytical
expressions for the electron lifetimes in transition metals. In [10] an approach proposed before
by Penn et al [29] has been modified to include the generation of secondary electrons and
applied to lifetimes in ferromagnetic metals.

Due to the physical transparency, the STA–DOS model represents an attractive alternative
to the more elaborate ab initio approaches in the studies of momentum-averaged quasi-particle
lifetimes. The greatest problem of the STA–DOS model is connected with the proper choice
of the transition matrix element. In all the above-cited references the matrix elements of
the model were evaluated semi-empirically from the comparison between the calculated and
available experimental lifetimes. The energy dependence of the matrix elements was either
neglected [31–33] or estimated by using experimental data [29]. To our knowledge, there
were no attempts to justify theoretically the neglecting of the energy dependence of matrix
elements. On the other hand, the evaluation of the energy dependence based on experimental
data is a risky procedure in view of the differences in the experimental data derived in different
research (see [23]). Besides, in many cases the quasi-particle relaxation times derived from
experimental data are determined not only by the electron–electron scattering, but also by
some additional processes: electron–phonon scattering, transport effects, cascade processes
etc [10]. The goal of our paper is therefore to analyse the possibility of correct description of
the momentum-averaged lifetimes within the STA–DOS model by choosing the value of the
transition matrix element from comparisons with the results of FEG theory and of the ab initio
LMTO–GW lifetime calculations. We do this by applying the STA–DOS model to two different
metallic systems: to aluminum, which represents free-electron-like metals, and to niobium,
which is an example of a metal with non-localized d electrons at the Fermi level. Electron
lifetimes in Al have been calculated before using the pseudo-potential GW method [21, 22].
It was found that the evaluated lifetimes do not practically show dependence on the direction of
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momentum vector. Here we discuss the energy dependence of the STA–DOS transition matrix
elements that follow from the comparison between the STA–DOS model and LMTO–GW
calculations. For both electrons and holes we derive some conclusions on the validity of the
STA–DOS model. For Nb we show more detailed data on the momentum-resolved lifetimes
and demonstrate the importance of band-structure effects, which are completely neglected in
the FEG model and partially included in the STA–DOS model.

2. The methods of evaluating the hot-electron lifetimes

In the FEG theory the scattering rate of an excited electron in the initial state at energy Ei , with
momentum q and velocity vq , is calculated by using the self-energy formalism of many-body
theory as [15, 16]

τ−1 = 1

2π2q

∫ (Ei−EF )

0
d ω

∫ q+

q−
d q qvqIm [−ε−1(q, ω)] (1)

where q± = √
2mEi ± √

2m(Ei − ω) are the minimum and maximum values of momentum
that can be transferred from the scattered electron to the Fermi sea, and ε is the Lindhard
RPA dielectric function of non-interacting electrons. (We use the atomic units throughout, i.e.
e2 = h̄ = me = 1.) In the limit of a small electron density parameter rs and a small excitation
energy Ei − EF the lifetime is reduced to the simple expression [15]

τ = 263r
− 5

2
s (Ei − EF )−2 (fs × eV2) (2)

which assumes that the so-called scaled lifetime τ × (E − EF )2 is energy independent and
determined only by the density parameter rs . An energy scaling qualitatively similar to that
of equation (2) has been observed for electrons in the free-electron-like band-states of noble
metals [23, 24].

In the STA no limitations are imposed on the shape of charge density, and the decay rate of
an electron in the initial state φi(r) at energy Ei is determined by the probability of this primary
electron scattering into a final state φf (r) at energy Ef . It is accompanied by a secondary
electron excitation from an occupied initial state φi ′(r) at energy E′

i into an unoccupied state
φf ′(r) at energy Ef ′ . In the first order of the time-dependent perturbation theory and by using
the ‘golden rule’ this probability is written as [27]

P
f,f ′
i,i ′ = 2π

∣∣[M(Ei − Ef )]f,f ′
i,i ′

∣∣2
δ(Ei − Ef + Ei ′ − Ef ′) (3)

where M is the matrix element of the dynamically screened interaction:

[M(ω)]f,f ′
i,i ′ =

∫
dr dr′ φ∗

i (r)φ∗
i ′(r′)M(r − r′, ω)φf (r)φf ′(r′). (4)

After neglecting the exchange terms contained in equation (3) [29], performing angular
averaging and summation over all the possible scatterings of primary and secondary electrons
this equation is reduced to the following expression for the scattering rate of a hot electron
characterized by energy E and spin coordinate σ (with σ being the opposite spin direction):

1

τσ (E)
= 2π

∫ E

EF

dE′ ρ>
σ (E′)

∫ EF

EF −ω

dε [ρ<
σ (ε)ρ>

σ (ε + ω) + ρ<
σ (ε)ρ>

σ (ε + ω)]|M(ω)|2 (5)

where ω = E − E′ is the energy loss in the primary electron de-excitation, ρ>(E) =
[1 − f (E)]ρ(E), ρ<(E) = f (E)ρ(E) where f (E) is the Fermi–Dirac occupation function
and ρ(E) is the density of states. One can then suppose that within a small energy interval
the matrix element M is fairly constant [30–33]. The most drastic simplification of the STA is
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achieved when one assumes that not only the matrix element but also the DOS takes a constant
value ρS [34]:

τσ (E)−1 = πρ3
S |M|2(E − EF )2. (6)

The similarity between equations (2) and (6) allows us to express the matrix element |M|2
in terms of the FEG theory [15].

In this paper we evaluate the transition matrix elements of the STA–DOS theory by fitting
the STA–DOS lifetimes to those obtained from the ab initio LMTO–GW method. In the
LMTO–GW method [12, 35–40] the polarization function of a solid is evaluated within the
RPA approximation [12]

Pi,j (q, ω) =
∑
σ,t,k

occ∑
n

unocc∑
n′

1

tω − εk+q,n′ + εk,n + iδ
〈Bq,iψk,n|ψk+q,n′ 〉〈ψk+q,n′ |ψk,nBq,j 〉. (7)

The summation includes terms with t = ±1 (electrons and holes) and spin value σ . To
calculate the LDA single-particle states of a solid ψk,n we employ the tight-binding version of
the LMTO [36]. The basis Bloch functions Bq,i of the polarization matrix are composed from
the products of the muffin-tin orbitals by using the procedures of orthogonalization described
in [38]. Once the polarization matrix is obtained, we evaluate the density–density response
function matrix R, dielectric and inverse dielectric matrices, ε and ε−1, and calculate the matrix
of the screened Coulomb interaction W

R = P + PV R (8)

ε = 1 − V P (9)

ε−1 = 1 + V R (10)

W = ε−1V . (11)

The Coulomb potential matrix V is computed by the prescriptions of [38]. We calculate
the self-energy within the GW approximation of many-body theory [13]:

&(r, r′, ω) = i

2π

∫
dω′ G(r, r′, ω + ω′)W(r, r′, ω′). (12)

In the GW method the self-energy is usually obtained by replacing the full Green function
by the Green function of non-interacting electrons. The imaginary part of the correlation term
in the self-energy is then expressed as [12]

Im &q,n(ω) =
∑

k

occ∑
n′

∑
i,j

Im W c
i,j (k, εk−q,n′ − ω)

×〈ψq,nψk−q,n′ |Bk,i〉〈Bk,j |ψk−q,n′ψq,n〉)(εk−q,n′ − ω) (13)

when ω � µ, and

Im &q,n(ω) = −
∑

k

unocc∑
n′

∑
i,j

Im W c
i,j (k, ω − εk−q,n′)

×〈ψq,nψk−q,n′ |Bk,i〉〈Bk,j |ψk−q,n′ψq,n〉)(ω − εk−q,n′) (14)

when ω > µ.
W c = W − V is the correlation part of the screened potential. The real part

of the self-energy is calculated by the Hilbert transform. The many-body self-energy
corrections to the LDA eigenvalues εq,i are determined by the expectation values of the
operator ,&(ω) = &(ω) − V xc

LDA, where V xc
LDA is the LDA exchange–correlation potential.



Lifetimes of low-energy electron excitations in metals 1941

Table 1. The calculated dependence of the squared STA–DOS transition matrix element on the
electron density parameter rs at an excitation energy of 1 eV.

rs 1.0 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.50 3.75 4.0

M2 (eV2) 0.013 0.120 0.28 0.57 1.12 1.84 3.22 5.02 7.12 10.08 13.62 17.17
(electrons)

M2 (eV2) 0.013 0.120 0.28 0.57 1.14 2.32 3.92 5.76 8.64 13.20 21.66 30.43
(holes)

Namely, from the first-order perturbation theory we have the Dyson equation for the complex
quasiparticle energy

Eq,i (ω) = εq,i + 〈ψq,i |,&q,i (ω)|ψq,i〉. (15)

We solve this equation retaining only the linear part of the dependence of Re ,& on ω near the
LDA eigenvalue and neglecting the change of Im ,&. In this approximation the self-energy
corrections to the LDA eigenvalues are

,εq,i = Eq,i − εq,i = Zq,i,&q,i (εq,i ) (16)

where

Zq,i =
[

1 − ∂Re ,&q,i (ω)

∂ω

]−1

ω=εq,i

(17)

is the so-called re-normalization factor. The imaginary part of the self-energy correction
gives then the line-width of the excitation, and the inverse value determines the lifetime of
excitation [14]

τ−1
q,i = 2|Im ,εq,i |. (18)

For a given excitation energy we average the calculated lifetimes over q, i, taking into account
the degeneracy of q-vectors in the Brillouin zone. Then substituting the ab initio densities of
states and averaged lifetimes into equation (5) we evaluate the STA energy-dependent matrix
element and choose the energy-independent matrix element.

3. The lifetimes of excited electrons in a free-electron gas, aluminum and niobium

In figure 1 we present some of the typical results of our FEG calculations. The inset in (a)
shows the energy dependence of the STA–DOS matrix element M2 calculated at the electron
density parameter rs = 2.0, which is close to the value rs = 2.06 of aluminum. The density
of states in the FEG was normalized to the ‘unit-cell’ volume equal to 100 au3. In the energy
range of interest, from −5 to 5 eV, the change of matrix element does not exceed 30%. With the
M2 value fixed in the interval between 0.4 and 0.6 eV2 the energy variation of the STA–DOS
lifetimes agrees well with the results of rigorous FEG theory, so we define the energy argument
of the matrix element as equal to 1 eV, and show in (a) the dependence of matrix element on
the density parameter. The numerical values of M2 are given in table 1. Using these data
one can calculate lifetimes for any rs straightforwardly from equation (5). The quality of such
calculations is characterized by (b) and (c), where the results of the FEG theory and STA–DOS
approach are compared at rs = 2. In the whole energy range of interest the agreement is very
good, except for a ∼10% difference at an energy of about 0.5 eV.

In figures 2 and 3 we present the data on aluminum that demonstrate the possibility of
using the STA–DOS approach with fixed transition probability for the lifetime calculations in



1942 V P Zhukov and E V Chulkov

-5 -4 -3 -2 -1 0
0

50

100

150

200 c

E-E
F
 (eV)

L
if

et
im

e 
(f

s)

0
0 1 2 3 4 5

50

100

150

200

b

E-E
F
 (eV)

 L
if

et
im

e 
(f

s)

1,0 1,5 2,0 2,5 3,0 3,5 4,0
0

4

8

12

16

20

24

28

32 a

r
s

M
2  (

1e
V

) 
(e

V
2 )

0 1 2 3 4 5

0,40

0,45

0,50

0,55

0,60

0,65

 M
2  (

 e
V

2  )
 E-E

F
 (eV)

Figure 1. The lifetimes of electrons and holes in a FEG. (a) The calculated dependence of the
STA–DOS transition matrix elements on the electron density parameter rs for an excitation energy
of 1 eV. Solid and open circles correspond to electrons and holes, respectively. The inset shows
the energy dependence of the transition matrix element for rs = 2.0. (b) The calculated energy
dependence of the electron lifetimes in a FEG with rs = 2.0. Solid circles indicate the results of a
rigorous FEG calculation; open circles represent the results of the STA–DOS calculation carried out
with a fixed transition matrix element. (c) The computed energy dependence of the hole lifetimes
in a FEG with rs = 2.0. The notations are the same as in (b).

real free-electron-like metals. Figure 2 shows that at energy from −12 to −5 eV the density
of states in Al is close to that of a FEG with rs = 2.06, whereas some deviations from the
free-electron behaviour are observed at higher energy. Panel (a) of figure 3 presents the energy
dependence of the matrix element of STA–DOS method as calculated from the comparison
with the LMTO–GW lifetimes. The convolution of the DOS sweeps out the DOS variations
near the Fermi energy and the change of M2 appears to be rather smooth, thus indicating the
possibility of using a fixed transition probability. In particular, variations in M2 of electrons
do not exceed 15%. In order to use the fixed M2 values of table 1, normalized to the unit-cell
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Figure 2. The total density of states in Al. The solid curve shows the LMTO calculation results;
the dashed curve represents the FEG DOS for rs = 2.06.

volume V0 = 100 au3, we recalculate them in accordance with the real unit-cell volume V as
M2 = M(V0)(V0/V )2. The value M2 = 0.58 eV2 obtained in this way is very close to that
of figure 3(a) at an energy of 1 eV. The comparison between the electron and hole lifetimes
calculated by the LMTO–GW method and by the STA–DOS approach with this value of the
matrix element shows almost perfect agreement (see figures 3(b) and (c)).

Hence, our calculations show that the STA–DOS model with fixed transition matrix
element, determined from comparisons between STA–DOS and FEG theory and presented in
table 1, provides a simple method of evaluating the lifetimes in real free-electron-like metals
with the precision comparable to that of the ab initio LMTO–GW method.

In figure 4 we show the density of states of body-centred-cubic (bcc) Nb, that differs
drastically from that of free-electron-like metals. From this DOS one may suppose that the
band-structure effects in Nb lifetimes can be very important. In figure 5 we present both
energy- and momentum-resolved (diamonds) and momentum-averaged (thick curve) electron
lifetimes calculated by the LMTO–GW method. The averaged lifetime is determined mainly by
the lifetimes of the big number of low-symmetry q-points that are far from the 4–H direction.
The lifetimes of states belonging to the 4–H direction (in figure 5 connected by the dashed
curve) are much higher then the averaged values. The lifetimes of the states with q-vectors close
to the 4–H direction also deviate from the averaged curve. Strong momentum dependence is
well seen in the energy- and momentum-resolved scaled lifetimes τ(E) × (E − EF )2 shown
in the inset in figure 5.

So the ab initio LMTO calculations reveal some deviations of the energy- and momentum-
resolved electron lifetimes in Nb from the predictions of FEG theory. Nevertheless, the analysis
of averaged lifetimes even in this case finds reminiscences of the free-electron-like properties.
This can be followed by figure 6, where we present the averaged electron and hole lifetimes
and, in the insets, the matrix elements of the STA–DOS theory evaluated by equating the
LMTO and STA–DOS lifetimes. In spite of great variations of DOSs near the Fermi energy,
the changes of the M2 values with energy appear to be rather smooth, which makes it possible
to choose relevant M2 averaged values equal to 0.055 eV2 for electrons and 0.065 eV2 for holes.
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Figure 3. The calculated quasiparticle lifetimes in Al. (a) The energy dependence of the STA–DOS
transition matrix element. Solid and open diamonds correspond to electron and hole excitations,
respectively. (b) The calculated energy dependence of the electron lifetimes. Solid diamonds
represent the results of the LMTO–GW calculation; crosses show the results of the STA–DOS
calculation with a fixed transition matrix element (see text). (c) The computed energy dependence
of the hole lifetimes. The LMTO–GW calculation results are denoted by open diamonds and the
STA–DOS data evaluated with a fixed matrix element are indicated by crosses.

These values are much lower than the corresponding FEG transition probabilities evaluated
from table 1 at the formal electron density parameter of Nb, rs = 1.78. Nevertheless, with
these averaged M2 values the correspondence between the LMTO and STA–DOS lifetimes is
very good for both electrons and holes.
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Figure 4. The total density of states in Nb as calculated by the LMTO tight-binding method.
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Figure 5. Electron lifetimes in Nb as calculated by the LMTO–GW method. Solid diamonds
represent the energy- and momentum-resolved lifetimes. The solid curve shows the hot-electron
lifetimes averaged over momenta. By the dashed curve are connected the lifetimes of the band-
states belonging to the 4–H direction of the Brillouin zone, whereas the lifetimes of some states
with momentum vectors close to the 4–H direction are surrounded by circles. Scaled lifetimes are
shown in the inset.

4. Conclusions

The main objective of our work was to assess the feasibility of evaluating the lifetimes of
excited electrons in free-electron-like metals and d-electron metals by employing the simple
DOS convolution model of the scattering theory. We did this based on the FEG lifetime
calculations and on the ab initio LMTO–GW calculations for aluminum and niobium.
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Figure 6. The LMTO and STA–DOS calculated quasiparticle lifetimes in Nb. Upper panel: electron
lifetimes. Solid diamonds show the energy-resolved (averaged over momenta) lifetimes computed
by the LMTO–GW method; open circles indicate the lifetimes evaluated by using the STA–DOS
approach with a fixed transition matrix element. The inset represents the energy dependence of the
STA–DOS transition matrix element. Lower panel: hole lifetimes. The notations are the same as
in the upper panel.

The performed evaluations show that the approximation of constant transition matrix
element of the STA–DOS approach is good for the lifetimes of excited states in FEG. Moreover,
the calculations for Al testify that the STA–DOS approach can be used to calculate the
momentum-averaged lifetimes in real free-electron-like metals in good agreement with the
LMTO–GW theory, employing the tabulated values of transition matrix element.

By contrast, the hot-electron lifetimes in Nb show great dispersion with respect to the
momentum-averaged values. The calculated lifetimes appear to be far from the predictions
of the FEG theory. Nevertheless, the approximation of energy-independent transition matrix
element of the STA–DOS approach appears to be also good, and with a proper choice of
the averaged transition probability the STA–DOS lifetimes are in good agreement with the
momentum-averaged ab initio LMTO–GW values.

The calculations for some free-electron-like and transition metals that can confirm these
conclusions are in progress now.
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